Causality and Causal Misperception in Dynamic Games

Sungmin Park

The Ohio State University

December 19, 2024

Motivation

Limited observation of reality ⇒ Varying perceptions of causality

People have different perceptions about how actions affect outcomes

- Subjects in lab experiments look at the same data and tell different causal narratives (Kendall and Charles, 2022)
- Yet, most applications of game theory continue to assume Rational Expectations (RE)

Question What is a useful solution concept to incorporate people's misperceptions about causality in extensive-form games?

Answer Let each player best respond to a belief about Nature and others' strategies consistent with observed outcome

Even better + let each player's belief be the simplest explanation consistent with observation

Question What is a useful solution concept to incorporate people's

misperceptions about causality in extensive-form games?

Answer Let each player best respond to a belief about Nature

and others' strategies consistent with observed outcomes

Even better + let each player's belief be the simplest explanation

Question What is a useful solution concept to incorporate people's misperceptions about causality in extensive-form games?

Answer Let each player best respond to a belief about Nature and others' strategies consistent with observed outcomes

Even better + let each player's belief be the simplest explanation consistent with observation

Question What is a useful solution concept to incorporate people's misperceptions about causality in extensive-form games?

Answer Let each player best respond to a belief about Nature and others' strategies consistent with observed outcomes

Even better + let each player's belief be the simplest explanation consistent with observation

Main Results

Does it Exist?

Every finite extensive-form game with perfect recall and observational constraint has an MOE

Is it Useful?

MOE captures common causal misperceptions such as

- Correlation neglect
- Omitted-variable bias (selection neglect)
- Simultaneity bias (reverse causality bias)

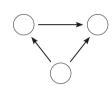
Is it Compatible with RE?

If agents have perfect observation of outcomes,

- OE ⇔ Self-confirming equilibrium
- MOE ⇔ Perfect Bayesian Equilibrium (PBE)

Literature

Bridging behavioral theory and standard game theory



Behavioral theory

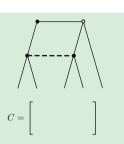
(e.g. Spiegler, 2020, 2021)

- Single-person decisions
- Directed Acyclic Graphs
- Subjective best responses

Standard game theory

(e.g. Kreps and Wilson, 1982)

- Multiple players
- Rational expectations
- Objective best responses



My paper (MOE)

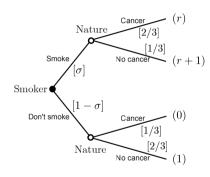
- Multiple players
- ullet Observational structure (C)
 - + maximum entropy
- Subjective best responses

Simplest Example

Simplest example

- Player chooses to smoke (s = 1) or not (s = 0).
 - If he smokes, he gets cancer with prob $\pi_1 = 2/3$.
 - If not, he gets cancer with prob $\pi_0 = 1/3$.
 - \circ He gets $r < \frac{1}{3}$ if he smokes and loses 1 if he gets cancer.
- Player's strategy is the prob $\sigma \in [0,1]$ of smoking.
- Player's **belief** is $\beta = (\beta_0, \beta_1)$ where β_s is the subjective probability of getting cancer given s.

 \Rightarrow Under RE, one shouldn't smoke because the causal effect of smoking on cancer $(\frac{2}{3} - \frac{1}{3} = \frac{1}{3})$ is larger than the reward r



Smoker's Problem

Observational consistency

Assumption Player observes only the marginal prob of cancer.

Definition

Given strategy $\sigma \in [0,1]$, a belief $\beta \in [0,1]^2$ is observation-consistent if

$$\underbrace{\sigma\beta_1 + (1-\sigma)\beta_0}_{\text{perceived marginal prob of cancer}} = \underbrace{\sigma \cdot \frac{2}{3} + (1-\sigma) \cdot \frac{1}{3}}_{\text{actual marginal prob of cancer}}$$

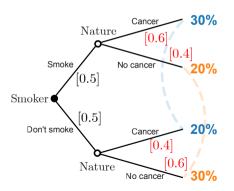
Interpretation Player sees a population of players choosing σ and sees the overall rate of cancer patients, but do not know the conditional probabilities.

Problem There are many observation-consistent beliefs.

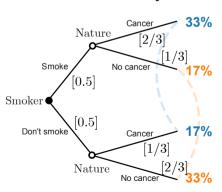
Illustration of an observational consistency

Suppose I smoke half of the time ($\sigma = 0.5$).

What I think Nature does



What Nature really does



Principle of Maximum Entropy

Notation

- $\mathbf{p}(\sigma, \beta)$: vector of probabilities over the 4 terminal nodes.
- $G(\cdot)$: Shannon entropy function, i.e. $G(\mathbf{q}) = \sum -q \log q$

Definition

Given strategy $\sigma \in (0,1)$, an observation-consistent belief $\beta^* \in [0,1]^2$ maximizes the entropy if

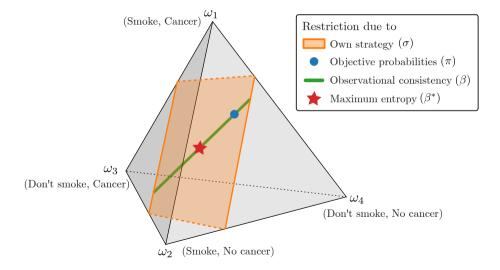
$$\beta^* \in \underset{\beta \text{ is observation-consistent}}{\operatorname{argmax}} G(\mathbf{p}(\sigma, \beta)).$$

Interpretation

 Among many worldviews consistent with observation, the agent believes in the the one that assumes the least information

Illustration of maximum entropy

A point prediction on belief



Maximum entropy ⇒ correlation neglect

Claim

For every $\sigma \in (0,1)$, the maximum-entropy belief β^* satisfies

$$\beta_0^* = \beta_1^* = (1 - \sigma) \cdot \frac{1}{3} + \sigma \cdot \frac{2}{3}.$$

Meaning Player doesn't think smoking causes cancer

Intuition Player observes no evidence of dependence between smoking and cancer, so he believes in none.

General result (Shore and Johnson, 1980; Csiszar, 1991)

Correlation neglect \Leftrightarrow maximum entropy, whenever agents observe only the marginal prob. distribution between two variables

Equilibrium

Defined just for the Smoker's Problem

Definition

A strategy-belief pair (σ, β) is an observation-consistent equilibrium (OE) if

- **1)** Given the belief β , the strategy σ is a best response, and
- **2** Given the strategy σ , the belief β is observation-consistent.

Interpretation

 OE is a prediction of how the smoker behaves, given his possibly wrong but observationally consistent belief

OE is too permissive

Every strategy is rationalizable by some observation-consistent belief

Claim

Every strategy σ has a belief β such that (σ, β) is an OE.

Note: Specifically, the OEs are

- 1 $\sigma = 0$, $\beta_0 = \frac{1}{3}$, and $\beta_1 \beta_0 \ge r$,
- 2 $\sigma=1$, $\beta_1=\frac{2}{3}$, and $\beta_1-\beta_0\leq r$, and

Idea Because there are many observation-consistent beliefs, there are many OEs.

Definition of MOE

Definition

An OE (σ, β) is a maximum-entropy observation-consistent equilibrium (MOE) if β maximizes the entropy given $\sigma \in (0, 1)$.

* For $\sigma \notin (0,1)$, an OE is an MOE if some $\{(\sigma^k,\beta^k)\}_{k=1}^\infty \to (\sigma,\beta)$ and each β^k maximizes the entropy given σ^k

Interpretation

 MOE is an OE with the extra requirement that the smoker believes in the simplest explanation consistent with observation

MOE provides a sharper prediction

Claim

A strategy-belief pair (σ, β) is an MOE if and only if

$$\sigma=1$$
 and $\beta_0=\beta_1=rac{2}{3}$.

Meaning

Player keeps smoking while thinking that smoking doesn't cause cancer

Intuition

 Maximum-entropy belief features correlation neglect, so no other strategy is a best response. General Framework

General framework

Model

(Γ, C) where

- \bullet Γ : a finite extensive-form game with perfect recall, and
- C: observational structure, a linear map from outcomes $(\Delta(\Omega))$ to observable outcomes (\mathbb{R}^{ℓ})

Observational consistency

Given a strategy σ_i , a belief β_i is observation-consistent if

$$C\mathbf{p}(\sigma_i, \beta_i) = C\mathbf{p}(\sigma_i, (\sigma_{-i}, \pi)).$$

Equilibrium (MOE)

A profile of strategies, beliefs, and posterior functions such that

- each strategy is (subjectively) sequentially rational,
- each belief maximizes the entropy s.t. obs consistency, and
- each posterior function satisfies Bayes rule

Existence of MOF

Theorem

Every finite extensive-form game with perfect recall and observational constraint has an MOE.

Meaning

 There always exists a prediction where everyone best responds to what they think how others play, with a belief that assumes the least information beyond observation.

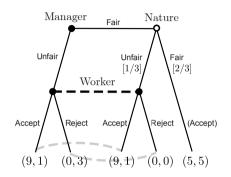
Key proof step

• With ϵ -constrained strategies, mappings from a strategy profile σ to a maximum-entropy beliefs β_i and posterior functions are well-behaved.

Example: An ultimatum-game-like scenario

Manager-Worker game

- Manager decides a fair or unfair bonus to Worker
- Even if Manager chooses a fair bonus, Nature might change it to unfair or keep it fair
- If Worker receives fair bonus, he accepts. If not, he either accepts or rejects.
 - He gets a thrill for rejecting an unfair Manager
- Worker doesn't know how likely Manager treats him unfairly in the interim or ex post (in a population)



$$C = \begin{bmatrix} 1 & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{bmatrix}$$

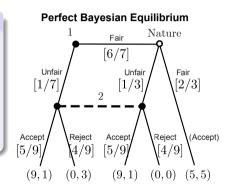
Standard prediction

Manager often treats Worker unfairly

Claim

In the unique Perfect Bayesian Equilibrium (PBE),

- Manager offers an unfair bonus 1 out of 7 times
- Worker accepts an unfair bonus 5 out of 9 times
 - He infers (correctly) that any unfair offer is due to Manager 1 out of 3 times



Intuition

 There is no causal misperception, because there is no ex-ante uncertainty about others' strategies

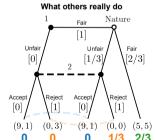
MOE prediction: Manager always tries to be fair

Claim

In the unique MOE,

- Manager always offers the fair bonus
 - She believes (correctly) that Worker will reject any unfair offer.
- Worker always rejects an unfair offer.
 - He believes (incorrectly) that Manager offers the unfair bonus 1 out of 6 times
 - He infers (incorrectly) that any unfair offer is caused by Manager 1 out of 2 times

Intuition Worker has no clue about the causes of his unfair treatment



Discussion: How to test MOE in the lab

Ideal experiment Have lab subjects play a game with different observational structures (perfect and imperfect)

- 1 Randomly assign subjects into Control and Treated groups
- Within each group, randomly match each subject with another and let them play 1 round of the game
- 3 Control players receive perfect feedback about all Control outcomes; Treated players receive imperfect feedback about all Treated outcomes
- 4 Repeat steps 2–3 for sufficiently many rounds

Example A simplified poker game (work in progress)

MOE and Common Causal Misperceptions

- Correlation neglect
- Omitted-variable bias (selection neglect)
- 3 Simultaneity bias (reverse causality bias)

1. A two-stage game of correlated consequences

Players

$$N = \{1, 2, \dots, n\}$$

Stages

- **1.** Players choose actions $x = (x_i)_{i \in N}$.
- 2. Nature chooses a consequence $y=(y_1,y_2)$ with conditional probability $\pi(y|x)>0$ for all (x,y).

Payoffs

$$u_i(x,y)$$

Obs. structure

Marginal probabilities of pairs (x, y_1) and (x, y_2)

Correlation neglect

Proposition

An OE (σ, β, μ) is a MOE if and only if for every player i,

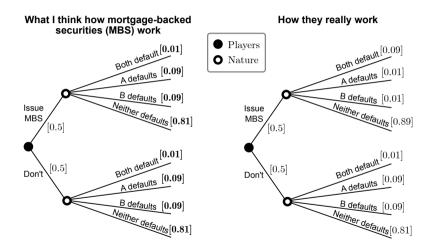
$$\beta_i(x_{-i}) = \sigma_{-i}(x_{-i}) \qquad \text{for all } x_{-i}, \text{ and}$$

$$\beta_i(y_1, y_2|x) = \pi(y_1|x)\pi(y_2|x) \qquad \text{for all } x \text{ and } (y_1, y_2).$$

Meaning In an MOE, players believe y_1 and y_2 remain (conditionally) independent regardless of their actions x.

Example (Acharya and Richardson, 2009) Financial regulators neglect the correlation between bank failures under lenient regulation

Stylized example of correlation neglect



Result Regulators neglect that issuing MBS causes correlated defaults

2. An omitted-variable game

Players

$$N = \{1, 2, \dots, n\}$$

Stages

- **1.** Nature assigns a state t with probability $\pi(t)$.
- **2.** Players see the state t and choose actions $x = (x_i)_{i \in N}$.
- 3. Nature chooses a consequence y with probability $\pi(y|t,x)$.

Payoffs

$$u_i(t,x,y)$$

Obs. structure

Marginal probabilities of pairs (t,x) and (x,y)

Omitted-variable bias (selection neglect)

Proposition

An OE (σ, β, μ) is an MOE if and only if every player's belief β_i satisfies

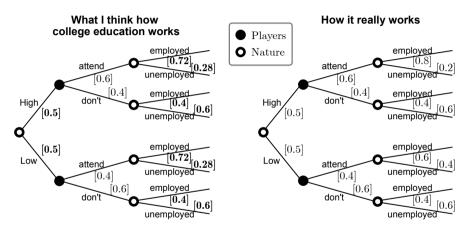
$$\begin{split} \beta_i(t) &= \pi(t), \\ \beta_i(x_{-i}|t) &= \sigma_{-i}(x_{-i}|t), \text{ and} \\ \beta_i(y|t,x) &= \sum_{t' \in \mathcal{T}} \pi(y|t',x) w(t',x) \qquad \text{for all } (t,x,y). \end{split}$$

Note: $w(\cdot)$ is a weight function $w(t',x) = \lim_{k \to \infty} \frac{\sigma^k(x|t')\pi(t')}{\sum_{t' \in \mathcal{T}} \sigma^k(x|t'')\pi(t'')}$,

Meaning Players believe the effect of x on y is the same across states t

Example High school graduates may overestimate or underestimate the value of college education

Stylized example of omitted-variable bias



Result High-ability students underestimate the value of college education.

Low-ability students overestimate it.

3. Game with simultaneous causality

Players

$$N = \{1, 2, \dots, n\}$$

Stages

(1) Nature assigns a state $t \in \{Forward, Reverse\}$ with probability $\pi(t)$.

If t = F, (2) players learn t and choose actions $x = (x_i)_{i \in N}$ and (3) Nature chooses consequence y with prob $\pi(y|F,x)$.

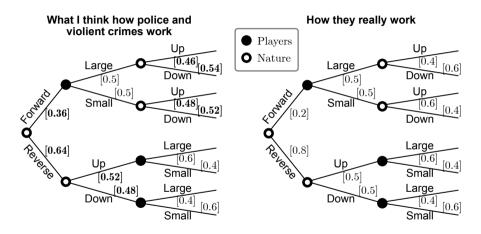
If t = R, (2) Nature chooses consequence y with prob $\pi(y|R)$ and (3) players learn (t, y) and choose actions $x = (x_i)_{i \in N}$.

Pavoffs $u_i(t,x,y)$

Obs. structure Marginal probabilities of the pair (x, y)

Example City mayors may misperceive the effects of police on reducing crimes

Stylized example of simultaneity (reverse causality) bias



Result Mayor underestimates the effect of police on reducing crime

Discussion: Implications for stuctural econometrics

Rational expectations (RE) assumption

- "Ubiquitous" even though it's a "very strong assumption" (Aguirregabiria and Mira, 2010)
- Relaxing it requires modeling and estimating beliefs (e.g., Aguirregabiria and Magesan, 2020)

MOE assumption

- A viable alternative to RE by providing a point-prediction on beliefs
- ullet Only requires an existing model + observational structure C
- Example application: Models of education and occupational choice (e.g., Keane and Wolpin, 1997)

Rest of the paper and takeaway

Rest of the paper

- Comparison with related concepts Comparison
- Game-theoretic definition of causality Causality

Takeaway: MOE is useful if you want to

- allow causal misperception in a dynamic model,
- let misperception arise endogenously from the observational structure, and
- want narrow predictions.

Rest of the paper and takeaway

Rest of the paper

- Comparison with related concepts Comparison
- Game-theoretic definition of causality Causality
- Cooperation in Centipede games Centipede game
- Games with infinite time horizons → Markov games

Takeaway: MOE is useful if you want to

- allow causal misperception in a dynamic model,
- let misperception arise endogenously from the observational structure, and
- want narrow predictions.

Thank you!

Precise definitions in the general framework

$Strategy \sigma_i \in \mathcal{S}_i$	$\sigma_i(a I_i)$ is player i 's objective prob of action a by i at info set I_i

Belief
$$\beta_i \in \mathcal{S}_{-i}$$
 $\beta_i(a|I_j)$ is player i 's subjective prob of action a by Nature or an opponent at info set I_j .

Posterior function
$$\mu_i = \mu_i(h|I_i)$$
 is player i's subjective prob of history $h \in I_i$ given I_i .

"Assessment"
$$(\sigma, \beta, \mu) = \{(\sigma_i, \beta_i, \mu_i)\}_{i \in N}$$

Definition of OE

Notation $\mathbf{p}(\sigma_i, \beta_i)$ is the subjective probability distribution over Ω

Definition

An assessment (σ, β, μ) is an observation-consistent equilibrium (OE) if for every player i,

- 1) the strategy σ_i is (subjectively) sequentially rational given (β_i, μ_i) ,
- **2** the belief β_i is observation-consistent given the strategy profile σ :

$$C\mathbf{p}(\sigma_i, \beta_i) = C\mathbf{p}(\sigma_i, (\sigma_{-i}, \pi)), \text{ and }$$

3 the posterior function μ_i is Bayes-consistent given (σ_i, β_i) .

Definition of MOE

Given a strategy profile σ , a player's observation-consistent belief β_i maximizes the entropy if

$$\beta_i \in \underset{\beta_i'}{\operatorname{argmax}} G(\mathbf{p}(\sigma_i, \beta_i')).$$

Definition

An OE (σ, β, μ) is a maximum-entropy observation-consistent equilibrium (MOE) if there exists a sequence

$$\{\sigma^k, \beta^k\}_{k=1}^{\infty} \longrightarrow (\sigma, \beta)$$

where each σ^k is a totally mixed strategy profile and each player's belief β_i^k maximizes the entropy given σ^k .

OE and MOE nest standard concepts as special cases

Proposition

Under perfect observation of outcomes (C = identity),

OE ←⇒ Self-confirming equilibrium*, and

 $\mathsf{MOE} \iff \mathsf{Perfect} \; \mathsf{Bayesian} \; \mathsf{equilibrium}.$

* Version with sequential rationality.

Implication

 Varying the extent of misperception is straightforward: Take an existing model and vary the observational structure C.

Other related concepts

Analogy-based expectation equilibrium (ABEE)

Jehiel (2005); Jehiel and Koessler (2008); Jehiel (2022)

Players believe others behave the same in "analogous" situations

Cursed (sequential) equilibrium

Eyster and Rabin (2005, CE); Fong, Lin and Palfrey (2023, CSE); Cohen and Li (2022, SCE)

Players believe others behave the same regardless of their types/info

Berk-Nash equilibrium

Esponda and Pouzo (2016)

Players' beliefs about the game are misspecified

Wait... what do I even mean by causality?

Notation $p(\sigma_i, \beta_i)(E|h)$ is the subjective probability of event $E \subset \Omega$ given history h, strategy σ_i , and belief β_i .

Definition

Let (σ,β,μ) be an OE. An action a instead of b is a **subjective cause** of an event $E\subset\Omega$ given history h to player i if

$$p(\sigma_i, \beta_i)(E|h, a) > p(\sigma_i, \beta_i)(E|h, b).$$

An action a instead of b is an objective cause of an event $E\subset\Omega$ given history h to player i if

$$p(\sigma_i, (\sigma_{-i}, \pi))(E|h, a) > p(\sigma_i, (\sigma_{-i}, \pi))(E|h, b).$$

Example: A centipede game

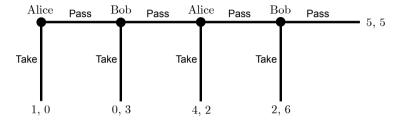


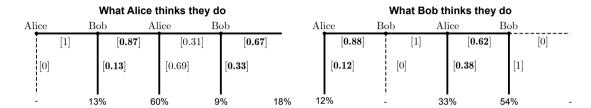
Figure: A four-node centipede game

Claim

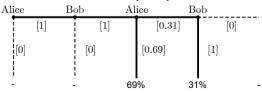
Suppose players observe only the average number of passes ($C = [0\ 1\ 2\ 3\ 4]$). There exists no MOE in which Alice Takes immediately.

Unique MOE of the centipede game

Each thinks the other mixes more than they really do



What they really do



Extension: Stochastic (Markov) Games

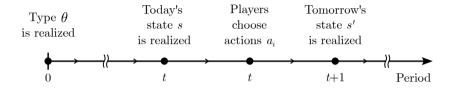


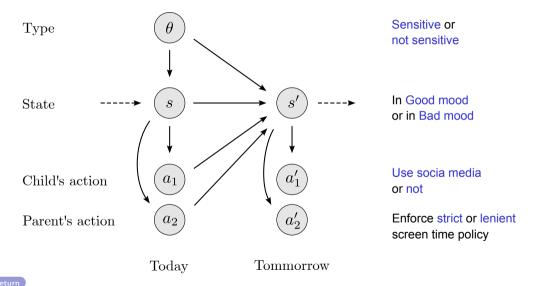
Figure: Stochastic game with permanent game types θ

Proposition

If players perfectly observe steady-state outcomes (θ, s, a, s') ,

 $MOE \iff Markov perfect equilibrium (MPE).$

Illustration: Parent-Child game of social media use



Equilibrium in the Parent-Child game

		Child's strategy (σ_1)		Parent's st	Parent's strategy (σ_2)	
Equilibrium	Type $(heta)$	Bad mood	Good mood	Bad mood	Good mood	
MPE	Not sensitive	Use	Use	Lenient	Lenient	
	Sensitive	Don't	Use	Lenient	Lenient	
MOE	Not sensitive	Use	Use	Strict	Lenient	
	Sensitive	Use	Use	Strict	Lenient	

Note: MPE refers to Markov perfect equilibrium. MOE refers to maximum-entropy observation-consistent equilibrium.

References I

- Acharya, Viral V. and Matthew Richardson (2009) "Causes of the financial crisis," *Critical Review*, 21 (2-3), 195–210.
- Aguirregabiria, Victor and Arvind Magesan (2020) "Identification and estimation of dynamic games when players' beliefs are not in equilibrium," *The Review of Economic Studies*, 87 (2), 582–625.
- Aguirregabiria, Victor and Pedro Mira (2010) "Dynamic discrete choice structural models: A survey," *Journal of Econometrics*, 156 (1), 38–67.
- Cohen, Shani and Shengwu Li (2022) "Sequential Cursed Equilibrium," arXiv preprint arXiv:2212.06025.
- Csiszar, Imre (1991) "Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems," *The Annals of Statistics*, 2032–2066.
- Esponda, Ignacio and Demian Pouzo (2016) "Berk–Nash equilibrium: A framework for modeling agents with misspecified models," *Econometrica*, 84 (3), 1093–1130.
- Eyster, Erik and Matthew Rabin (2005) "Cursed equilibrium," Econometrica, 73 (5), 1623-1672.

References II

- Fong, Meng-Jhang, Po-Hsuan Lin, and Thomas R Palfrey (2023) "Cursed sequential equilibrium," arXiv preprint arXiv:2301.11971.
- Jehiel, Philippe (2005) "Analogy-based expectation equilibrium," Journal of Economic Theory, 123 (2), 81–104.
- ——— (2022) "Analogy-based expectation equilibrium and related concepts: Theory, applications, and beyond."
- Jehiel, Philippe and Frédéric Koessler (2008) "Revisiting games of incomplete information with analogy-based expectations," *Games and Economic Behavior*, 62 (2), 533–557.
- Keane, Michael P and Kenneth I Wolpin (1997) "The career decisions of young men," *Journal of Political Economy*, 105 (3), 473–522.
- Kendall, Chad W and Constantin Charles (2022) "Causal narratives," Technical report.
- Kreps, David M and Robert Wilson (1982) "Sequential equilibria," *Econometrica: Journal of the Econometric Society*, 863–894.

References III

Shore, John and Rodney Johnson (1980) "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," *IEEE Transactions on Information Theory*, 26 (1), 26–37.

Spiegler, Ran (2020) "Behavioral implications of causal misperceptions," *Annual Review of Economics*, 12, 81–106.

——— (2021) "Modeling players with random "data access"," Journal of Economic Theory, 198, 105374.